Minggu, 16 April 2017

Komputasi Biologi


Komputasi
Komputasi adalah algoritma yang digunakan untuk menemukan suatu cara dalam memecahkan masalah dari sebuah data input. Data input disini adalah sebuah masukan yang berasal dari luar lingkungan sistem. Komputasi ini merupakan bagian dari ilmu komputer berpadu dengan ilmu matematika. Secara umum ilmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains).
Dalam penggunaan secara umum, biasanya berupa penerapan simulasi komputer atau berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar terhadap bidang ilmu yang mendasari teori ini. Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.

Pengertian Komputasi Modern
Komputasi modern bisa disebut sebuah konsep sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory, memory disini bisa juga dari memory komputer. Oleh karena pada saat ini kita melakukan komputasi menggunakan komputer maka bisa dibilang komputer merupakan sebuah komputasi modern. Konsep ini pertama kali digagasi oleh John Von Neumann (1903-1957). Dalam kerjanya komputasi modern menghitung dan mencari solusi dari masalah yang ada, dan perhitungan yang dilakukan itu meliputi:
1.    Akurasi
2.    Kecepatan
3.    ProblemVolume Besar
4.    Modelling
5.    Kompleksitas

Sejarah Komputasi Modern
Dalam perkembangan komputasi modern, kita tidak bisa melupakan begitu saja orang dibalik perkembangan komputasi modern yang merubah semua pekerjaan jadi lebih mudah. Sejarah komputasi dimulai dari seseorang ilmuan yang ternama di bidang teknologi. Permulaan komputasi modern dimulai pada saat tahun 1926 oleh ilmuan yang berasal dari hungaria yang bernama John Von Neumann. Von Neumann seorang ilmuan yang belajar dari Berlin dan Zurich dan mendapatkan diploma pada bidang teknik kimia pada tahun 1926.
 Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Berkat keahlian dan kepiawaiannya Von Neumann dalam bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.
Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies. Dipicu ketertarikannya pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Sebagai konsultan pada pengembangan ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori. berdasarkan beberapa definisi di atas, maka komputasi modern dapat diartikan sebagai suatu pemecahan masalah berdasarkan suatu inputan dengan menggunakan algoritma dimana penerapannya menggunakan berbagai teknologi yang telah berkembang seperti komputer.



Bioinformatika
Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika”, adalah gabungan antara ilmu biologi dan ilmu teknik informasi (TI). Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran (Gambar 1), dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya.
Ilmu bioinformatika lahir atas insiatif para ahli ilmu komputer berdasarkan artificial intelligence. Mereka berpikir bahwa semua gejala yang ada di alam ini bisa diuat secara artificial melalui simulasi dari gejala-gejala tersebut. Untuk mewujudkan hal ini diperlukan data-data yang yang menjadi kunci penentu tindak-tanduk gejala alam tersebut, yaitu gen yang meliputi DNA atau RNA. Bioinformatika ini penting untuk manajemen data-data dari dunia biologi dan kedokteran modern. Perangkat utama Bioinformatika adalah program software dan didukung oleh kesediaan internet.

Cabang-cabang yang Terkait dengan Bioinformatika
            Dari pengertian Bioinformatika baik yang klasik maupun baru, terlihat banyak terdapat cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika --terutama karena Bioinformatika itu sendiri merupakan suatu bidang interdisipliner--. Hal tersebut menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika. Di bawah ini akan disebutkan beberapa bidang yang terkait dengan Bioinformatika.
Ø  Biophysics
Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society).
Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.
Ø  Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit.
Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.
Ø  Medical Informatics
Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah "sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis."
Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih "rumit" --yaitu informasi dari sistem-sistem superselular, tepat pada level populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.
Ø  Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute's Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini.
Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obatobatan hingga sekarang. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponen-komponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics.
Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilities.
Ø  Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.
Ø  Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu "menyelesaikan" masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu.
Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.
Penerapan Bioinformatika di Indonesia
Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalam mengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah.
Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain:
Ø  Deteksi Kelainan Janin
Lembaga Biologi Molekul Eijkman bekerja sama dengan Bagian Obstetri dan Ginekologi Fakultas Kedokteran Universitas Indonesia dan Rumah Sakit Cipto Mangunkusumo sejak November 2001 mengembangkan klinik genetik untuk mendeteksi secara dini sejumlah penyakit genetik yang menimbulkan gangguan pertumbuhan fisik maupun retardasi mental seperti antara lain, talasemia dan sindroma down. Kelainan ini bisa diperiksa sejak janin masih berusia beberapa minggu.
Talasemia adalah penyakit keturunan di mana tubuh kekurangan salah satu zat pembentuk hemoglobin (Hb) sehingga mengalami anemia berat dan perlu transfusi darah seumur hidup. Sedangkan sindroma down adalah kelebihan jumlah untaian di kromosom 21 sehingga anak tumbuh dengan retardasi mental, kelainan jantung, pendengaran dan penglihatan buruk, otot lemah serta kecenderungan menderita kanker sel darah putih (leukemia).
Dengan mengetahui sejak dini, pasangan yang hendak menikah, atau pasangan yang salah satunya membawa kelainan kromosom, atau pasangan yang mempunyai anak yang menderita kelainan kromosom, atau penderita kelainan kromosom yang sedang hamil, atau ibu yang hamil di usia tua bisa memeriksakan diri dan janin untuk memastikan apakah janin yang dikandung akan menderita kelainan kromosom atau tidak, sehingga mempunyai kesempatan untuk mempertimbangkan apakah kehamilan akan diteruskan atau tidak setelah mendapat konseling genetik tentang berbagai kemungkinan yang akan terjadi.
 Di bidang talasemia, Eijkman telah memiliki katalog 20 mutasi yang mendasari talasemia beta di Indonesia, 10 di antaranya sering terjadi. Lembaga ini juga mempunyai informasi cukup mengenai spektrum mutasi di berbagai suku bangsa yang sangat bervariasi. Talasemia merupakan penyakit genetik terbanyak di dunia termasuk di Indonesia.
Ø  Pengembangan Vaksin Hepatitis B
Rekombinan Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMN Departemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain itu Lembaga Eijkman juga bekerja sama dengan PT Diagnosia Dipobiotek untuk mengembangkan kit diagnostik.
Ø  Meringankan Kelumpuhan dengan Rekayasa RNA
Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kini dapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat ketidaknormalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini. Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat pertumbuhannya menjadi dewasa.
 Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofin terdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesi dalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian.
Teknologi rekayasa RNA seperti proses penyambungan (slicing) ekson dalam satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.


Sumber:

Tidak ada komentar:

Posting Komentar